We have come to a point where we should really discuss the issue of the "unity of the sciences," a central issue of debate, it seems, within the Vienna Circle -- and in the philosophy of science (or the sciences?) to this day.
This was an issue central to their philosophizing. When they became a big enough of a deal to organize international conferences, those conferences were to be known as the International Congress for the Unity of Science.
At one of the conferences that they gave that title, at Prague in 1934, Alfred Tarski made his appearance on the stage of the history of philosophy. Tarski (portrayed above) gave a lecture on the ideas of truth and falsity in which he tried to resolve the ancient Liars' paradox. His efforts, Edmonds tells us, "caused so much buzz that an additional session was hastily arranged to discuss it further."
Tarski's reaction to the Liar Paradox was to suggest a formal language with a hierarchy of truths. At the bottom level there are statements about bananas and trolleys. But in this language it would be impossible to make statements ABOUT statements. At the second layer it would be possible to make statements about the first-layer statements. "What I've said about the bananas on the trolley was a lie." There would be no paradox there. To make statements about the second layer statements one has to ascend to a third layer. And so forth. At no layer could one make a statement about "this" statement since the reference would always have to work down the hierarchy.
That is a digression, though. What I want to ask here is ... what does the phrase "the unity of science" mean? Edmonds gives an important partial answer at the end of chapter 9, "[Neurath] saw the existing division of science, into biology, chemistry, physics and so on, as purely practical. Fundamentally these various branches were engaged in the same enterprise -- understanding the physical world."
The order in which Edmonds lists those three specific sciences is important there: biology first, then chemistry, then physics. He is conveying and I think attributing to Neurath the idea that biology is applied chemistry and chemistry is applied physics. To go a bit further: perhaps physics is applied mathematics? The sciences are separate in that some are less fundamental than others, and the distinction of the less fundamental from the more is a concession of ignorance: we don't know enough to complete the "A is nothing but B" reductions. But we know enough to know that in principle some day we might know enough to do so.
Another member of the circle, Felix Kaufmann, published a book in 1936 called METHODENLEHRE DER SOZIALWISSENSCHAFTEN (The Methods of the Social Sciences). This extends the chain suggested by Edmonds' first list. The social sciences are applied biology.
Interestingly, too, Kaufmann was a mathematician interested in the philosophical foundations of THAT field. He took a constructivist view of the field, closer to Brouwer than to Russell/Whitehead.
Beyond the substantive issue of reductionism, there is the methodological issue of whether there is a single "scientific method" that applies to a certain group of fields in scholarship and not others, a method that can be defined independent of substantive conclusions and that demarcates science from both non-science and pseudo-science. Of this "demarcation problem" I will speak next week, when we continue these series of posts.
Comments
Post a Comment